Fraunhofer-Gesellschaft, headquartered in Munich, Germany, is Europe's leading organization for applied research. With over 75 institutes and research units across Germany, each focusing on different fields of science and technology, Fraunhofer drives innovation in sectors such as health, security, communication, energy, and environment. The organization's commitment to applied research fosters collaborations with industry, service sectors, and public administration, translating scientific findings into practical applications and promoting technological advancement globally.
The Fraunhofer Institute for Microengineering and Microsystems IMM and the Fraunhofer Institute for Applied Optics and Precision Engineering IOF have developed various core components for the optical system of the hyperspectral satellite.
Everyone hears differently – this applies inside a vehicle too. That is why Fraunhofer IDMT in Oldenburg has developed a technological concept for fast and individual sound adaptation, which has been integrated into the multimedia system of vehicles from the Mercedes-Benz Group AG. At the heart of the development is an algorithm that easily adjusts the sound of music according to passengers’ wishes.
Until now, the most common way to dispose of green waste and sewage sludge has been to compost or incinerate it. However, using these materials to produce the valuable energy source hydrogen would make far more sense. A team of researchers at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA is working towards this very goal.
Anyone who has ever ruined a cake knows that the correct identification of visually similar substances such as sugar and salt has great significance in food preparation. However, complex compositional analyses can also provide information about the quality, ripeness or freshness of products.
Forming presses are widely used as key elements of industrial production processes. From automotive technology to refrigerators, almost every product we encounter contains formed parts. The purchasing costs of these machines can reach double-digit millions, and it takes a great deal of time to set up and adjust precisely as needed. Given such a high level of investment, buyers expect machinery of this kind to keep running efficiently for a long time without any loss in quality.
The quality of industrial production processes is ensured by a large number of sensor-based individual inspections. This generates large amounts of data. However, until now, the information from the individual sensors has generally only been looked at in isolation.
Was there life on Mars? The European Space Agency (ESA) is setting out to answer with its ExoMars mission. The mission, in which Russia is a participant, is scheduled to launch this fall, although recent political developments have raised questions as to whether this will be possible. Part of the mission is an exciting analytical system that was designed to operate in space and was created as part of the research work conducted at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF.
Artificial intelligence is regularly applied in areas such as image analysis and speech recognition. However, in the industrial production sector its potential is still scarcely used. Several Fraunhofer institutes have recently developed a solution as part of the lighthouse project “ML4P — Machine Learning for Production”, which aims to make industrial manufacturing much more efficient through the use of machine learning. The software suite is very flexible and can be easily applied in existing production processes.
The Fraunhofer Institute for Photonic Microsystems IPMS offers ready-made, platform-independent IP core modules. With IP modules, developers can quickly adopt complete functional areas in standard products such as SoCs, microcontrollers, FPGAs and ASICs.
Together with 24 German research institutions and companies, the Fraunhofer Institute for Photonic Microsystems IPMS is working on a quantum computer with improved error rates in the collaborative project QSolid coordinated by Forschungszentrum Jülich.